Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Nat Commun ; 15(1): 3413, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649740

RESUMO

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.

2.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562796

RESUMO

Phase separation in aqueous solutions of macromolecules is thought to underlie the generation of biomolecular condensates in cells. Condensates are membraneless bodies, representing dense, macromolecule-rich phases that coexist with the dilute, macromolecule-deficient phase. In cells, condensates comprise hundreds of different macromolecular and small molecule solutes. Do all components contribute equally or very differently to the driving forces for phase separation? Currently, we lack a coherent formalism to answer this question, a gap we remedy in this work through the introduction of a formalism we term energy dominance analysis. This approach rests on model-free analysis of shapes of the dilute arms of phase boundaries, slopes of tie lines, and changes to dilute phase concentrations in response to perturbations of concentrations of different solutes. We present the formalism that underlies dominance analysis, and establish its accuracy and flexibility by deploying it to analyse phase spaces probed in silico, in vitro , and in cellulo .

3.
Mol Cell ; 84(7): 1188-1190, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579677

RESUMO

In his commentary in this issue of Molecular Cell,1 Struhl reasons that the term "intrinsically disordered regions" represents a vague and confusing concept for protein function. However, the term "intrinsically disordered" highlights the important physicochemical characteristic of conformational heterogeneity. Thus, "intrinsically disordered" is the counterpart to the term "folded, " with neither term having specific functional implications.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/metabolismo , Conformação Proteica
4.
Nucleus ; 15(1): 2319957, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38443761

RESUMO

In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.


Assuntos
Nucléolo Celular , Domínios Proteicos
5.
Trends Cell Biol ; 34(4): 274-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429121

RESUMO

Can the fusion/fission of biomolecular condensates be regulated in cells? In a recent study, Wu et al. show that phosphorylation of a key scaffold protein that drives condensates in postsynaptic densities modulates the apparent miscibility of underlying components, thus enabling intracondensate demixing-to-mixing transitions.


Assuntos
Fosforilação , Humanos
6.
Cell ; 187(8): 1889-1906.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503281

RESUMO

Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.


Assuntos
Nucléolo Celular , Proteínas Nucleares , Força Próton-Motriz , Nucléolo Celular/química , Núcleo Celular/química , Proteínas Nucleares/química , RNA/metabolismo , 60422 , Proteínas Intrinsicamente Desordenadas/química , Animais , Xenopus laevis , Oócitos/química , Oócitos/citologia
7.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464104

RESUMO

Stress granules form via co-condensation of RNA binding proteins with prion-like low complexity domains (PLCDs) and RNA molecules released by stress-induced polysomal runoff. Homotypic interactions among PLCDs can drive amyloid fibril formation and this is enhanced by ALS-associated mutations. We find that homotypic interactions that drive condensation versus fibril formation are separable for A1-LCD, the PLCD of hnRNPA1. These separable interactions lead to condensates that are metastable versus fibrils that are globally stable. Metastable condensates suppress fibril formation, and ALS-associated mutations enhance fibril formation by weakening condensate metastability. Mutations designed to enhance A1-LCD condensate metastability restore wild-type behaviors of stress granules in cells even when ALS-associated mutations are present. This suggests that fibril formation can be suppressed by enhancing condensate metastability through condensate-driving interactions.

8.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873180

RESUMO

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.

9.
Nat Commun ; 14(1): 7678, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996438

RESUMO

Cellular matter can be organized into compositionally distinct biomolecular condensates. For example, in Ashbya gossypii, the RNA-binding protein Whi3 forms distinct condensates with different RNA molecules. Using criteria derived from a physical framework for explaining how compositionally distinct condensates can form spontaneously via thermodynamic considerations, we find that condensates in vitro form mainly via heterotypic interactions in binary mixtures of Whi3 and RNA. However, within these condensates, RNA molecules become dynamically arrested. As a result, in ternary systems, simultaneous additions of Whi3 and pairs of distinct RNA molecules lead to well-mixed condensates, whereas delayed addition of an RNA component results in compositional distinctness. Therefore, compositional identities of condensates can be achieved via dynamical control, being driven, at least partially, by the dynamical arrest of RNA molecules. Finally, we show that synchronizing the production of different RNAs leads to more well-mixed, as opposed to compositionally distinct condensates in vivo.


Assuntos
Condensados Biomoleculares , RNA , Termodinâmica
10.
Nat Chem ; 15(12): 1693-1704, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932412

RESUMO

Co-phase separation of RNAs and RNA-binding proteins drives the biogenesis of ribonucleoprotein granules. RNAs can also undergo phase transitions in the absence of proteins. However, the physicochemical driving forces of protein-free, RNA-driven phase transitions remain unclear. Here we report that various types of RNA undergo phase separation with system-specific lower critical solution temperatures. This entropically driven phase separation is an intrinsic feature of the phosphate backbone that requires Mg2+ ions and is modulated by RNA bases. RNA-only condensates can additionally undergo enthalpically favourable percolation transitions within dense phases. This is enabled by a combination of Mg2+-dependent bridging interactions between phosphate groups and RNA-specific base stacking and base pairing. Phase separation coupled to percolation can cause dynamic arrest of RNAs within condensates and suppress the catalytic activity of an RNase P ribozyme. Our work highlights the need to incorporate RNA-driven phase transitions into models for ribonucleoprotein granule biogenesis.


Assuntos
RNA Catalítico , RNA , Temperatura , Proteínas de Ligação a RNA , Fosfatos , Transição de Fase
11.
Cell ; 186(22): 4936-4955.e26, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37788668

RESUMO

Intrinsically disordered regions (IDRs) represent a large percentage of overall nuclear protein content. The prevailing dogma is that IDRs engage in non-specific interactions because they are poorly constrained by evolutionary selection. Here, we demonstrate that condensate formation and heterotypic interactions are distinct and separable features of an IDR within the ARID1A/B subunits of the mSWI/SNF chromatin remodeler, cBAF, and establish distinct "sequence grammars" underlying each contribution. Condensation is driven by uniformly distributed tyrosine residues, and partner interactions are mediated by non-random blocks rich in alanine, glycine, and glutamine residues. These features concentrate a specific cBAF protein-protein interaction network and are essential for chromatin localization and activity. Importantly, human disease-associated perturbations in ARID1B IDR sequence grammars disrupt cBAF function in cells. Together, these data identify IDR contributions to chromatin remodeling and explain how phase separation provides a mechanism through which both genomic localization and functional partner recruitment are achieved.


Assuntos
Montagem e Desmontagem da Cromatina , Complexos Multiproteicos , Proteínas Nucleares , Humanos , Cromatina , Proteínas de Ligação a DNA/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo
12.
Res Sq ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37886520

RESUMO

The functions of biomolecular condensates are thought to be influenced by their material properties, and these are in turn determined by the multiscale structural features within condensates. However, structural characterizations of condensates are challenging, and hence rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and bespoke coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that mimic nucleolar granular components (GCs). We show that facsimiles of GCs are network fluids featuring spatial inhomogeneities across hierarchies of length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights, extracted from a combination of approaches, suggest that condensates formed by multivalent proteins share features with network fluids formed by associative systems such as patchy or hairy colloids.

13.
Res Sq ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790538

RESUMO

Multivalent proteins undergo coupled segregative and associative phase transitions. Phase separation, a segregative transition, is driven by macromolecular solubility, and this leads to coexisting phases above system-specific saturation concentrations. Percolation is a continuous transition that is driven by multivalent associations among cohesive motifs. Contributions from percolation are highlighted by the formation of heterogeneous distributions of clusters in sub-saturated solutions, as was recently reported for Fused in sarcoma (FUS) and FET family proteins. Here, we show that clustering and phase separation are defined by a separation of length- and energy-scales. This is unmasked when glutamate is the primary solution anion. Glutamate is preferentially excluded from protein sites, and this enhances molecular associations. Differences between glutamate and chloride are manifest at ultra-low protein concentrations. These differences are amplified as concentrations increase, and they saturate as the micron-scale is approached. Therefore, condensate formation in supersaturated solutions and clustering in sub-saturated are governed by distinct energy and length scales. Glutamate, unlike chloride, is the dominant intracellular anion, and the separation of scales, which is masked in chloride, is unmasked in glutamate. Our work highlights how components of cellular milieus and sequence-encoded interactions contribute to amplifying distinct contributions from associative versus segregative phase transitions.

14.
Biophys J ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717144

RESUMO

Macromolecular solubility is an important contributor to the driving forces for phase separation. Formally, the driving forces in a binary mixture comprising a macromolecule dissolved in a solvent can be quantified in terms of the saturation concentration, which is the threshold macromolecular concentration above which the mixture separates into coexisting dense and dilute phases. In addition, the second virial coefficient, which measures the effective strength of solvent-mediated intermolecular interactions provides direct assessments of solvent quality. The sign and magnitude of second virial coefficients will be governed by a combination of solution conditions and the nature of the macromolecule of interest. Here, we show, using a combination of theory, simulation, and in vitro experiments, that titrations of crowders, providing they are true depletants, can be used to extract the intrinsic driving forces for macromolecular phase separation. This refers to saturation concentrations in the absence of crowders and the second virial coefficients that quantify the magnitude of the incompatibility between macromolecules and the solvent. Our results show how the depletion-mediated attractions afforded by crowders can be leveraged to obtain comparative assessments of macromolecule-specific, intrinsic driving forces for phase separation.

15.
Nat Commun ; 14(1): 5527, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684240

RESUMO

Prion-like low-complexity domains (PLCDs) are involved in the formation and regulation of distinct biomolecular condensates that form via phase separation coupled to percolation. Intracellular condensates often encompass numerous distinct proteins with PLCDs. Here, we combine simulations and experiments to study mixtures of PLCDs from two RNA-binding proteins, hnRNPA1 and FUS. Using simulations and experiments, we find that 1:1 mixtures of A1-LCD and FUS-LCD undergo phase separation more readily than either of the PLCDs on their own due to complementary electrostatic interactions. Tie line analysis reveals that stoichiometric ratios of different components and their sequence-encoded interactions contribute jointly to the driving forces for condensate formation. Simulations also show that the spatial organization of PLCDs within condensates is governed by relative strengths of homotypic versus heterotypic interactions. We uncover rules for how interaction strengths and sequence lengths modulate conformational preferences of molecules at interfaces of condensates formed by mixtures of proteins.


Assuntos
Príons , Condensados Biomoleculares , Eletricidade Estática
16.
bioRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609232

RESUMO

Multivalent proteins undergo coupled segregative and associative phase transitions. Phase separation, a segregative transition, is driven by macromolecular solubility, and this leads to coexisting phases above system-specific saturation concentrations. Percolation is a continuous transition that is driven by multivalent associations among cohesive motifs. Contributions from percolation are highlighted by the formation of heterogeneous distributions of clusters in sub-saturated solutions, as was recently reported for Fused in sarcoma (FUS) and FET family proteins. Here, we show that clustering and phase separation are defined by a separation of length- and energy-scales. This is unmasked when glutamate is the primary solution anion. Glutamate is preferentially excluded from protein sites, and this enhances molecular associations. Differences between glutamate and chloride are manifest at ultra-low protein concentrations. These differences are amplified as concentrations increase, and they saturate as the micron-scale is approached. Therefore, condensate formation in supersaturated solutions and clustering in sub-saturated are governed by distinct energy and length scales. Glutamate, unlike chloride, is the dominant intracellular anion, and the separation of scales, which is masked in chloride, is unmasked in glutamate. Our work highlights how components of cellular milieus and sequence-encoded interactions contribute to amplifying distinct contributions from associative versus segregative phase transitions.

17.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461587

RESUMO

Macromolecular solubility is an important contributor to the driving forces for phase separation. Formally, the driving forces in a binary mixture comprising a macromolecule dissolved in a solvent can be quantified in terms of the saturation concentration, which is the threshold macromolecular concentration above which the mixture separates into coexisting dense and dilute phases. Additionally, the second virial coefficient, which measures the effective strength of solvent-mediated intermolecular interactions provides direct assessments of solvent quality. The sign and magnitude of second virial coefficients will be governed by a combination of solution conditions and the nature of the macromolecule of interest. Here, we show, using a combination of theory, simulation, and in vitro experiments, that titrations of crowders, providing they are true depletants, can be used to extract the intrinsic driving forces for macromolecular phase separation. This refers to saturation concentrations in the absence of crowders and the second virial coefficients that quantify the magnitude of the incompatibility between macromolecules and the solvent. Our results show how the depletion-mediated attractions afforded by crowders can be leveraged to obtain comparative assessments of macromolecule-specific, intrinsic driving forces for phase separation. SIGNIFICANCE: Phase separation has emerged as a process of significant relevance to sorting macromolecules into distinct compartments, thereby enabling spatial and temporal control over cellular matter. Considerable effort is being invested into uncovering the driving forces that enable the separation of macromolecular solutions into coexisting phases. At its heart, this process is governed by the balance of macromolecule-solvent, inter-macromolecule, and solvent-solvent interactions. We show that the driving forces for phase separation, including the coefficients that measure interaction strengths between macromolecules, can be extracted by titrating the concentrations of crowders that enable macromolecules to phase separate at lower concentrations. Our work paves the way to leverage specific categories of measurements for quantitative characterizations of driving forces for phase separation.

18.
J Chem Theory Comput ; 19(16): 5609-5620, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37463458

RESUMO

Conformational heterogeneity is a defining hallmark of intrinsically disordered proteins and protein regions (IDRs). The functions of IDRs and the emergent cellular phenotypes they control are associated with sequence-specific conformational ensembles. Simulations of conformational ensembles that are based on atomistic and coarse-grained models are routinely used to uncover the sequence-specific interactions that may contribute to IDR functions. These simulations are performed either independently or in conjunction with data from experiments. Functionally relevant features of IDRs can span a range of length scales. Extracting these features requires analysis routines that quantify a range of properties. Here, we describe a new analysis suite simulation analysis of unfolded regions of proteins (SOURSOP), an object-oriented and open-source toolkit designed for the analysis of simulated conformational ensembles of IDRs. SOURSOP implements several analysis routines motivated by principles in polymer physics, offering a unique collection of simple-to-use functions to characterize IDR ensembles. As an extendable framework, SOURSOP supports the development and implementation of new analysis routines that can be easily packaged and shared.


Assuntos
Annona , Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/metabolismo , Annona/metabolismo , Conformação Proteica , Simulação por Computador , Domínios Proteicos
19.
Dev Cell ; 58(11): 915-916, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279696

RESUMO

The condensate-forming ability of transcription factors (TFs) has received considerable attention, although how condensates function in transcription remains unclear. In this issue of Developmental Cell, Wang et al. show that target DNA and transcriptional regulators work as soap-like surfactants to adsorb on condensates, affecting the activities of transcriptional condensates.


Assuntos
Sabões , Fatores de Transcrição , Fatores de Transcrição/genética , DNA/genética , Corpos Nucleares
20.
Biophys J ; 122(12): 2396-2403, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37161095

RESUMO

Biomolecular condensates form via phase transitions of condensate-specific biomacromolecules. Intrinsically disordered regions featuring the appropriate sequence grammars can contribute via homotypic and heterotypic interactions to the driving forces for phase separation of multivalent proteins. Experiments and computations have matured to the point where the concentrations of coexisting dense and dilute phases can be measured or computed for individual intrinsically disordered regions in complex milieus. For a macromolecule such as a disordered protein in a solvent, the locus of points that connects concentrations of the two coexisting phases defines a phase boundary, or binodal. Often, only a few points along the binodal are accessible via measurements. In such cases, and for quantitative and comparative analysis of parameters that describe the driving forces for phase separation, it is useful to fit measured or computed binodals to mean-field free energies for polymer solutions. The nonlinearity of the underlying free energy functions makes it challenging to put mean-field theories into practice. Here, we present FIREBALL, a suite of computational tools designed to enable efficient construction, analysis, and fitting to experimental or computed data of binodals. We show that depending on the theory being used, one can also extract information regarding coil-to-globule transitions of individual macromolecules.


Assuntos
Proteínas Intrinsicamente Desordenadas , Polímeros , Proteínas , Proteínas Intrinsicamente Desordenadas/metabolismo , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...